Get Latest ECE/EEE Projects in your Email

Vision-Based Obstacle Avoidance for UAVs

This paper describes a vision-based navigation and guidance design for UAVs for a combined mission of waypoint tracking and collision avoidance with unforeseen obstacles using a single 2-D passive vision sensor.

An extended Kalman filter (EKF) is applied to estimate a relative position of obstacles from vision-based measurements. The stochasticz-test value is used to solve a correspondence problem between the measurements and the estimates that have been already obtained by then.

A collision cone approach is used as a collision criteria in order to examine if there is any obstacle that is critical to the vehicle. A guidance strategy for collision avoidance is designed based on a minimum-effort guidance (MEG) method for multiple target tracking.

The vision-based navigation and guidance designs suggested in this paper are integrated with realtime image processing algorithm and the entire vision-based control system are evaluated in the closed-loop 6 DoF flight simulation.
Source: Georgia Institute of Technology
Author: Yoko Watanabe | Anthony J. Calise | Eric N. Johnson

Download Project

Autonomous Pedestrian Collision Avoidance Using a Fuzzy Steering Controller

Stereo Based Pedestrian Detection for Collision Avoidance Applications

For Free ECE/EEE Project Downloads:
Enter your email address:
( Its Free 100% )

Leave a Comment

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>